FEHMARNBELT FIXED LINK
Constructing the world’s longest immersed tunnel

DEPLOYING PRIVATE CAPITAL
Paving a way forward to increase the uptake of green solutions

IADC SAFETY AWARD WINNER
DEME’s retractable ladder designed for hydraulic track excavators

MARINE AGGREGATE DREDGING
REGULATORY CHALLENGES AND MANAGEMENT OF THE MARINE AREA AROUND ENGLAND
An enduring vision for many decades, a fixed and direct transport connection between Scandinavia and Central Europe is about to be realised with the construction of the Fehmarnbelt Fixed Link. In spite of the large fleet of existing dredgers available for the project, several technical developments took place before actual deployment for tunnel trench excavation. Read the full article on page 18.
CONTENTS

SOCIÖ-ECONOMIC

Deploying private capital to accelerate the green transition

Looking at the bigger role that private capital can play in bridging the infrastructure funding gap and increasing the uptake of green solutions,

PROJECT

The Fehmarnbelt tunnel trench dredging project

An insight into the improved dredging equipment used and the methodology specially adapted in the Fehmarnbelt Fixed Link project, an 18-kilometre-long immersed tunnel between Denmark and Germany.

CONTRACTS

Regulation and management of marine aggregate dredging in England

As the marine area around England is a busy competition for space comes with regulatory challenges and an integrated marine management approach that uses a robust planning system is required.

EVENTS

Upcoming courses and conferences

Check out the many networking opportunities including IADC’s 1-day conference on Framework Sustainable Marine and Freshwater Infrastructure Conference in Dubai.

SAFETY

DEME’s award winning retractable ladder design

Read about this year’s winner of the IADC Safety Award and how this invaluable piece of safety equipment is now being used with other companies.

EDITORIAL

A COLLABORATIVE VISION FOR SUSTAINABILITY

On 25 November 2022, hundreds of young protesters, including Greta Thunberg, marched through the Swedish capital to file a lawsuit against the Swedish state for failing to take adequate measures to stop climate change. With young people around the world taking action and demanding change, what can the dredging industry as a whole be doing to action that change?

The fact remains blatantly clear. Despite the goals of the Paris Agreement still firmly in place, climate change continues. From the heat waves across Europe this summer, to the torrential monsoon rains that triggered the most severe flooding in Pakistan’s recent history, extreme weather conditions around the globe show no sign of diminishing.

Meters of sea level rise are no longer a question of “if,” but “when.” For countries in the Mekong delta region, for example, the impacts of sea level rise will be catastrophic.

Despite the goals of the Paris Agreement still firmly in place, climate change continues.

As we do not prepare now for the adaptation needed in the future, the threat to our children and grandchildren’s generation is very real. Somehow awareness and a platform is lacking in both society and the political sphere.

The dredging industry can provide large-scale measures to adapt to sea level rise.

As a dredging industry, we are used to realising solutions in a sustainable way. Already for 20 years, we are aware of the impact of turbidity on corals and plant habitat, and work accordingly. Dredging companies are the front runners in the development of nature-based solutions, and IADC strongly advocates sustainability. The inclusion of externalities (positive and negative impacts that are not monetised) in project assessments is a necessity to become truly sustainable. In addition, a long-term vision is required if we are to maintain economically successful deltas and create space for living and working in the world’s deltas in a sustainable way.

On 9 February 2023 in Dubai, President IADC Frank Verhoeven will be speaking about the importance of sustainability in the dredging industry. He will address how private capital can accelerate the green transition in marine and freshwater infrastructure and the importance of collaboration and innovation in the industry.

Looking at the bigger role that private capital can play in bridging the infrastructure funding gap is one of the key topics of the conference. We also take a look at the regulations in place that manage aggregate dredging around England and dive into the world of technical developments with the Fehmarnbelt tunnel trench project and share DEME’s design innovation that won this year’s IADC Safety Award. As the year draws to a close, I would like to take this opportunity to wish everyone a happy holiday season and a prosperous New Year.

Frank Verhoeven
President, IADC
Green solutions in ports, waterways and coastal projects have increasingly become available thanks to many years of research and pioneering efforts in practice. These sustainable and/or nature-based solutions have shown to be good alternatives for classic solutions, but application is far from mainstream yet. One of the major hurdles is the lack of access of private capital to finance these kinds of solutions despite the strong interest of capital markets in green infrastructure opportunities. Identifying the hurdles and paving a way forward to overcome these hurdles could therefore help to increase the uptake of those green solutions.

DEPLOYING PRIVATE CAPITAL TO ACCELERATE THE GREEN TRANSITION

A promising perspective

Although state-of-the-art sustainable and nature-based solutions have proven to be effective in practice, application at scale is certainly not the case. A major hurdle is that these types of solutions almost entirely rely on direct public investment and the willingness of governmental bodies around the world to take such a step. This limits the uptake and scaling of such solutions.

From the investment side, limitations in public budgets mean there is a bigger role for private capital to play to finance such projects. Moreover, increasingly, private capital is seeking such green opportunities. This increase is driven by fiscal regimes, regulations and reputational drivers. This capital is deployed, for instance, in wind parks, solar fields, electrification of railways, but seeks further diversification in the infrastructure sector. Deploying private capital to accelerate the uptake of green solutions for ports, waterways and coastal projects is therefore a promising perspective.

This particular issue came to table in discussions with the Swiss based MAVA foundation in 2019. The foundation aims to push sustainable development in a wide sense. Leveraging the force of capital markets to make real-world impact is a key pillar of their approach. The discussion led to the idea to build an initiative around the topic of financing green infrastructure in and around ports, waterways and coastal areas. This idea quickly took shape in a cooperation between Vital Ports (a Dutch NGO dedicated to this topic), B Capital Partners AG (Swiss-based Infrastructure Investment House), Swiss Re (Re-insurance Company), IADC (International Association of Dredging Companies) and CEDA (Central Dredging Association).
In a broader sense, Switzerland positions itself as the world’s capital for green finance. Linking the dredging community, which is in line with green port, waterway and coastal infrastructure projects, works to make the world more resilient. B Capital Partners is an independent investment house established in 2003 in Zurich, focusing on sustainability and innovation. In 2019, B Capital joined the United Nations Sustainable Development Goals (SDGs) initiative, aiming to contribute to the global agenda of sustainable development.

In a recent publication by Vital Ports and B Capital Partners, titled “Financing of Sustainable Marine and Freshwater Infrastructure,” the authors explore financing mechanisms in this sector. The report, which was published in conjunction with the 2020 Freshwater Infrastructure: A joint study to explore financing of green coastal, river and port projects, highlights the need for a more integrated approach to financing green marine and freshwater infrastructure projects.

The report identifies several key lessons that can guide the future of financing in this sector. These lessons include:

1. The importance of understanding the financial motivation and needs of the parties involved in financing green infrastructure projects.
2. The need for a broader range of financing sources, including public and private sectors.
3. The importance of collaboration between different stakeholders, such as financiers, developers, and environmental agencies.
4. The potential for innovative financing instruments to support green projects.
5. The need for clear and transparent communication about the benefits of green infrastructure projects.

The report provides insights into the challenges and opportunities for financing green marine and freshwater infrastructure projects. It highlights the need for a more coordinated approach to financing, and the importance of understanding the financial motivations of different stakeholders.

Financial partners
The Swiss Re Group is one of the world’s leading providers of insurance and other forms of insurance-related risk transfer, serving to make the world more resilient. B Capital Partners is an independent investment house established in 2003 in Zurich. The company focuses on innovation, sustainability, and the development of new investment approaches.

Socio-economic
Green infrastructure projects, which is in line with the dredging community, offer a range of benefits, including environmental and economic improvements. These projects involve the use of green solutions, such as natural infrastructure, to enhance the resilience of coastal and freshwater systems.

A joint study
Experts from Vital Ports, B Capital Partners, and other financial intermediaries, lenders and asset managers have collaborated in the development of this report, “Financing of Sustainable Marine and Freshwater Infrastructure.” The study aims to explore financing mechanisms for these projects, which are becoming increasingly important in the face of climate change and other environmental challenges.

The study identifies two key lessons from a wider perspective on the topic to both the financial sector and the dredging community. In addition, to develop a webinar series as part of it, concentrates around the key lessons as identified in the report. These key lessons are:

1. To improve the availability of private capital in this segment, a joint screening by sponsors and private capital suppliers is strongly encouraged. Working jointly on may avoid following leads which may be attractive from a mere construction and de-risking perspective, but are not sufficient for investors economically and/or sustainability wise. A joint selection effort based on sustainability and contractual solutions can focus scarce resources on the most promising opportunities.
2. To serve its purpose well to support further conversations between the dredging and financial communities, the report was foreseen in a series of webinars, but wider dissemination of the message by means of a report can be challenging. In discussion with
Green solutions might open up new ways of cost recovery as these solutions typically offer wider societal benefits. This requires special effort to capture and monetize these societal benefits to ensure these can be of support for the project. Some examples of such models are selling carbon credits (either via voluntary or compulsory markets), habitat banking, inclusion of sources supporting natural development or involve outside beneficiaries (tourism sector fisheries) with an intention to make the project happen. Figure 3 shows an example of this.

Further lessons from the webinar series
Following the launch of the report in September 2021, a series of three webinars were held to disseminate the results and stimulate mutual learning on the basis of the findings. These sessions were organised jointly with PIANC, CEDA and IADC and reached an audience of 350 people. The majority of the audience came from the public sector, engineering firms, contractors, infrastructure, finance/investment sector and insurance industry. In all three sessions, the key lessons from the report were discussed and used to spur interaction with the public. The reflections from the audience have been anonymised, sorted and grouped together. These results are summarised below around three main questions: Subsequent steps are needed to support the influx of private capital in order to accelerate the uptake of green solutions.

Figure 3
Mangrove restoration in the village of Timbul Sloko, Java, Indonesia.

Figure 4
Financing of green coastal, river and port projects infographic.
Society

SOCIO-ECONOMIC

issue to resolve. The financial world is often not aware of waterborne infrastructure projects. Green alternatives in this sector are often considered to be more expensive than classic solutions, which is not necessarily the case. Very often, a green solution is no more expensive than angrey one. The coastal protection project Hondsbossche and Partemar Sea defends in the Netherlands was considered a clear example of such a case.

Question 2: How can the identified key lessons be put into practice? The most important steps coming forth from the audience were the need to build awareness, develop proper business models and strengthen policy incentives.

Awareness and communication are certainly also key. This counts for the broader public as well as specialised sectors, including the diversified group of investors and financiers. Currently many stakeholders are so-called ‘sea blind’ meaning what happens outside our usual direct view. As with what happens outside in the seas, does not feel very familiar. Activities of the dredging industry, for example, are well known in the sector itself but is less extended to the general public. Raising awareness of all the work that needs to be done, and which can be done, in a sustainable way was therefore seen as helpful.

Again, the absence of clear business models was a major taking point. A potential solution was seen in establishing support from international organisations to develop a classification/certification system to determine the value of a project. However, this would be a long-term exercise. Public-private partnerships could also be of help. As would realising a dialogue early in the process between private investors and public sector to give the private sector more detailed information. In addition, creating platforms where investors have access to positive externalities was considered useful to support the sustainable variants of projects. Involvement of contractors on board at an early stage, without limiting them in tendering could also improve awareness.

Certification and a common legal framework were also addressed. The legal framework is insufficiently developed to fit the needs of green projects. The expectation was that some of the hurdles around certification and the legal framework would diminish when the EU taxonomy is in place and becomes a familiar concept.

A lack of a proper business model for green infrastructure in the sector was one of the major taking points with the audience. Commercial investors need a proper business model which is often lacking in NbS projects. Revenue streams can be quantified easily for energy transitions projects such as wind farms, not so much for integrated coastal or river projects. Working with carbon credits and habitat banking is one of the potential solutions. Climate adaptation and coastal protection projects do not generate a cashflow, which is an important barrier for investors. Blended finance is presented as a potential solution in the report but it takes a long time to organise. This makes it less interesting for tendering parties.

Improving awareness was one of the additional issues that came forward. The financial world is often not aware of waterborne infrastructure projects. Green alternatives in this sector are often considered to be more expensive than classic solutions, which is not necessarily the case. A holistic assessment of projects is lacking, resulting in exclusion of externalities that would tilt the decision. The coastal protection project Hondsbossche and Partemar Sea defends in the Netherlands was considered a clear example of such a case.

Question 1: Do you agree on the key lessons to address as mentioned in the report? This question gave a wide variety of responses. The key lessons were generally recognised but triggered other reflections. Many comments were made with regard to determination and uncertainty of the benefits of green solutions. More transparency and knowledge is needed about NbS and the benefits of NbS should be made clear to the wider public. Raising awareness of all the work that needs to be done, and which can be done, in a sustainable way was therefore seen as helpful.

As would realising a dialogue early in the process between private investors and public sector to give the private sector more detailed information. In addition, creating platforms where investors have access to positive externalities was considered useful to support the sustainable variants of projects. Involvement of contractors on board at an early stage, without limiting them in tendering could also improve awareness.
spur the uptake. And perhaps having focus on a subset of projects [e.g., ports] could help drive momentum.

Policy incentives and government backing are also a field where progress can be made. Distinction for these kinds of projects can be made between social goods and commercial goods. Usually, governments pay for social goods. However only countries with a well-developed tax structure are able to do so. By clearly determining all these benefits coming from NDB and providing a wide societal Cost Benefit analysis, the specific benefits could be allocated to either the public and/or commercial stakeholders. This might enable the possibility of both sectors jointly financing when both public and private sectors benefit.

Question 3: How can we build momentum to assure steady progress in this field?

This question geared itself to an array of suggestions. Broadly, these comments fell into two groups: communication and instrumentation.

On the topic of communication, it was mentioned that financiers and the dredging community need to speak the same language. Contact persons at financial institutions are often unaware because they do not talk to corporations. Collaborating with other NDBs, such as the International Association of Ports and Harbours (IAPH) and the International Federation of Consulting Engineers (FIDIC) could be helpful. An initiative like EcoShape can also spread the message. Another suggestion was made to develop a tool that will report with tailor-made solutions for a selection of barriers mentioned in the existing report. Establishing a dedicated program and taking a step to assure steady progress was also a suggestion from this audience. Make the purpose of this taskforce clear to the outside world as the waterborne infrastructure sector needs a voice.

The other group of comments related to all sorts of instrumentation. This provided a myriad of suggestions. The financial sector is very transactional, which means agreements play a central role and should therefore receive special emphasis to accelerate the uptake of green projects in this sector. Define what ‘green projects’ are and demonstrate the additional values of the sustainable solutions. These green solutions bring more than only the primary aim of the project. At the same time the European Investment Bank is bound by the EU taxonomy, determining what might be called green or not. On the financial side, new instruments, such as blue bonds and insurance products are configured that could be useful to build further momentum.

Conclusions

The main conclusion of the report and the webinar is that sustainable waterborne infrastructure solutions are available and have been tested and are economically viable. The potential of these kinds of solutions was widely recognized and seen as the way forward.

As clear as this conclusion may stand, the picture becomes far more nuanced when deployment of private capital brought itself into the conversation. One of the key issues that comes with this is the necessity of generating cashflows to secure paying off those loans and investments.

Rich discussions took place around appropriate business models, identifying the opportunities of the wider benefits of sustainable solutions, converting benefits into revenue streams and the roles of the public and private sector in this. A first general conclusion is that work needs to be done to establish widely acknowledged business models for green port, waterway and coastal projects. Such business models should include clear ways to determine the additional holistic benefits of sustainable solutions and ways to monetize these.

Directly following this conclusion is the debate around the definition of ‘green’. Although a diffuse concept in the wider infrastructure sector itself, it is sensitive and important topic for investors and bankers as well.

Defining what is green and sustainable is key to deciding what kind of financial instruments to assess the wider societal benefits of sustainable infrastructure. Considering the financial opportunities to assess the wider societal benefits of sustainable solutions and ways to monetize these benefits.

First, awareness of the possibilities to apply sustainable solutions in the port, waterway and coastal infrastructure sector is to be strengthened. Particularly strengthening outreach to the private capital sector would be useful. A dedicated programme and taskforce to keep building such awareness was seen as useful.

Developing further instrumentation was another reflection on the report. Proper instrumentation to assess the wider societal benefits of sustainable infrastructure was mentioned in this light. The transactional nature of the entire sector, both developers and investors alike, calls for fitting frameworks and agreements.

In general, the webinars achieved another reflection on the report. Proper instrumentation to assess the wider societal benefits of sustainable infrastructure was mentioned in this light. The transactional nature of the entire sector, both developers and investors alike, calls for fitting frameworks and agreements.

The main conclusion of the report and the webinar is that sustainable waterborne infrastructure solutions are available and have been tested and are economically viable. The potential of these kinds of solutions was widely recognized and seen as the way forward.

As clear as this conclusion may stand, the picture becomes far more nuanced when deployment of private capital brought itself into the conversation. One of the key issues that comes with this is the necessity of generating cashflows to secure paying off those loans and investments.

Rich discussions took place around appropriate business models, identifying the opportunities of the wider benefits of sustainable solutions, converting benefits into revenue streams and the roles of the public and private sector in this. A first general conclusion is that work needs to be done to establish widely acknowledged business models for green port, waterway and coastal projects. Such business models should include clear ways to determine the additional holistic benefits of sustainable solutions and ways to monetize these.

Directly following this conclusion is the debate around the definition of ‘green’. Although a diffuse concept in the wider infrastructure sector itself, it is sensitive and important topic for investors and bankers as well.

Defining what is green and sustainable is key to deciding what kind of financial instruments to assess the wider societal benefits of sustainable solutions and ways to monetize these benefits.

As the conclusions make clear, subsequent steps are needed to support the influx of private capital in order to accelerate the uptake of green solutions. Carving this path forward is the topic of a dedicated 1-day conference titled “Financing Sustainable Marine and Freshwater Infrastructure” organized by IADC in Dublin on 9 February 2023.

Acknowledgments

The author wishes to thank IADC, CEDA, Vital Ports, Swiss Re and B Capital Partners, which resulted in the report “Financing Sustainable Marine and Freshwater Infrastructure”. The report provided six key lessons that can help to develop this market: 1) joint screening of projects by sponsors and private capital suppliers; 2) certification of projects; 3) standardized data and reporting tools; 4) utilization of insurance products for de-risking projects and 5) enforced policy incentives, in a series of webinars following the publication further learnings were gathered. This article discusses these six key learnings, as well as the further reflections on the key lessons from a wider audience.

Summary

In the past decades, multitudes of sustainable and nature-based solutions have become available to apply in port, waterway and coastal projects. In practice, the application of such solutions is still far from mainstream. Meanwhile, public budgets for these projects are limited while private capital providers are seeking green infrastructure projects to put their money at work. Unfortunately, the specific field of green port, waterway and coastal infrastructure is mostly overlooked with regard to deployment of private capital.

This topic was the focus of a joint study by Vital Ports, Central Dredging Association (CEDA), International Association of Dredging Companies (IADC), Swiss Re and B Capital Partners, which resulted in the report “Financing Sustainable Marine and Freshwater Infrastructure”. The report provided six key lessons that can help to develop this market: 1) joint screening of projects by sponsors and private capital suppliers; 2) certification of projects; 3) standardized data and reporting tools; 4) utilization of insurance products for de-risking projects and 5) enforced policy incentives, in a series of webinars following the publication further learnings were gathered. This article discusses these six key learnings, as well as the further reflections on the key lessons from a wider audience.

References

A fixed and direct transport connection between Scandinavia and Central Europe has been an enduring vision for many decades. This vision is about to be realised with the construction of the Fehmarnbelt Fixed Link, an 18-kilometre-long immersed tunnel between Rødbyhavn in Denmark and Puttgarden in Germany. When it opens in 2029, the tunnel will be the longest immersed tunnel in the world combining a dual railway and motorway connection. This article provides insight into the improved dredging equipment used and the methodology specially adapted and further developed to the project’s requirements.

THE FEHMARNBELT TUNNEL TRENCH DREDGING PROJECT

Project background
The Fehmarnbelt Fixed Link has been designed and planned by Femern A/S, a subsidiary of the Danish state-owned company Sund & Bælt Holding A/S. In 2008, a state treaty was approved and signed by the Danish and German governments. Both countries agreed that Denmark would be solely responsible for financing the coast-to-coast project (and the related extension of the Danish coastlines) and therefore be the sole owner of the Fixed Link. In turn, Germany will finance and ensure the timely development of the landworks on the German side. The treaty stipulates that the link will consist of a twin-track railway and a four-lane motorway.

The toll station for the users of the Fixed Link will be located on the Danish side of the Fehmarnbelt. Femern A/S was responsible for designing and providing the basis for the official approval of the coast-to-coast section of the Fehmarnbelt Fixed Link on behalf of the Danish Ministry of Transport. After a series of investigations between alternative solutions (an immersed tunnel, a bored tunnel, a cable-stayed bridge and a suspension bridge), Femern A/S recommended an immersed tunnel as the preferred technical solution for the Fixed Link.

The Fixed Link will fill the infrastructural gap between Scandinavia and mainland Europe by means of an efficient and high-quality transport infrastructure. In addition, the railway connection will result in the highly needed release of the Danish East-West rail connection. Freight trains from Zealand, Sweden and Norway will be able to take the direct tunnel into Germany and mainland Europe instead of the current longer routes via Southern Jutland and Northern Germany (Hamburg), shortening the rail freight distance by 160 kilometres. Thus, the Fehmarnbelt Fixed Link is part of the Trans-European Transport Network (TEN-T) (Figure 1). TEN-T’s policy addresses the implementation and development of a Europe-wide network of railway lines, roads, inland waterways, maritime shipping routes, ports, airports and railroad terminals. Its ultimate objective is to enhance the efficiency of the European infrastructure so that the EU’s single market functions better and with less environmental impact. The tunnel will also offer a new strong link to the Fehmarnbelt region itself stimulating...
growth and prosperity. Nine million people currently live in the region, which extends between the cities of Hamburg, Kiel, Lübeck, Copenhagen, and Malmö. The project will not only provide work for local people but will also create jobs at companies in the region supplying the site with raw materials, goods and services.

After an international competitive bidding process, the Tunnel Dredging and Reclamation (TDR) contract was awarded to Fjernhandel Contractors (FBC) in joint venture with Boskalis and Van Oord. TDR started preparations in 2019 and actual operations commenced in June 2020 when the first rock was placed to start construction of the breakwaters around the Lolland work harbour in Denmark.

Geology

Figure 2 shows the geological longitudinal profile along the tunnel alignment. Both the Danish and German sides have gently sloping near-shore profiles with a maximum water depth of around 30 metres. In order to accommodate the immersed tunnel, the maximum dredging depth will be approximately 48 metres.

The soil to be dredged for the tunnel trench comprise of upper layers of post glacial and late glacial deposits (gyttja, sand, silt and clays). Underlying layers are made up of glacial deposits (clay and sand tills) followed by a high plastic layer with highly plastic to extremely plastic clay. The German side is characterised by tills and a central basin (the central part of the geological cross section along the tunnel alignment) of post glacial, and the central basin (the central part of the geological cross section along the tunnel alignment) of post glacial and late glacial deposits (gyttja, sand, silt and clays).

Unit 1: Postglacial sand
Unit 2: Postglacial gyttja and freshwater peat
Unit 3: Postglacial glacial clay and silt
Unit 4: Postglacial glacial sand
Unit 5: Upper till
Unit 6: Methwol deposits
Unit 7: Lower till
Unit 8: Palaeogene clay

Each unit features different characteristics when it comes to ease of dredging placement in land reclamation or foundation of tunnel elements.

The entire UXO clearance works comprised three individual phases: surveys, identification or relocation or removal.

Unexploded ordnance and naval archaeology

The survey and removal of any potential unexploded ordnance (UXOs) within the respective work areas comprised a series of activities that began in 2011. First, an initial desk study was carried out, followed by detailed surveys and a removal operation.

The desk study included searching for information in the Royal British Navy, German Navy and Royal Danish Navy archives. As a result, it became apparent that the capital dredging works would be initiated until a full survey and removal campaign had been completed. Overall, the entire UXO clearance works comprised three individual phases: surveys, identification or relocation or removal of identified UXOs.

UXO and other surveys

Surveys were carried out by the specialist company Heinrich Hirdes (a Boskalis subsidiary) deploying its state-of-the-art equipped fleet for the purpose. A towed magnetometer array measuring the total field amplitude was deployed within the respective work areas with a line spacing of 15 metres between each magnetometer array, in combination with a multibeam and side scan sonar survey. The post processing of the specified detection criteria, a maximum detection height of the magnetometer of 4 metres above the seabed was used as the threshold.

Based on the magnetometer survey, the target list was correlated to the anomalies detected by the combined multibeam and side scan sonar surveys to identify the surface targets. The survey campaign resulted in a final target list comprising 2,863 potential targets, approximately half of which were classified as potential UXOs.

UXO identification and removal campaign

Subsequent target inspections were performed by deploying a specialised tool operated from a work pontoon within the nearshore area and from survey vessel Hamra covering the offshore areas (Figure 3). The specialised tool comprises a group of instruments and equipment for the purpose, including an acoustic profiler system, the EM detection system, an imaging sonar, a dredge pump and finally an army package for the recovery of ordnance. The configuration allows for immediate switching between all these individual tools (Figure 4).

Relocation of identified UXOs

Further handling of identified UXOs depended on the conditions of each object as concluded by the previous investigations. Therefore, the encountered ammunition objects were classified as follows:

• Any UXO concluded as safe to transport was recovered onto the deck of the inspection vessel and subsequently handed over to the responsible authority in the Port of Kiel, Germany.

• Any UXO not safe to transport on deck was relocated by means of underwater transport facilities to another storage location — again in collaboration with the German authorities.

In the case of an UXO being neither safely transported nor relocated to another area, the UXO was blasted in situ by respecting the requirements from the respective German and/or Danish authorities.

Within the Danish territory, the Royal Danish Navy monitored and assisted the campaign with the actual identification of UXO items, and took charge in the event of a removal operation, i.e. explosive ordnance disposal (EOD) in the German territory. Heinrich Hirdes operated on its own until the need for German authorities to move identified items. A special and extraordinary set up of requirements of mitigation measures for the removal of any UXO in the areas close and inside the Natura 2000 [network of core breeding and resting sites for rare and threatened species] were put in place. This is a result of extensive talks with German authorities on enhanced and underwater noise mitigations from the EOD of an UXO, such as double bubble curtains and pingers.

Based on the UXO survey campaign 119 UXO targets were investigated. Of the 119, 104 were cleared as non-UXO targets. One as an old anchor and 12 UXO targets were relocated to a wet storage area in German waters. One UXO target was cleared by the German Navy and one UXO target located in Danish waters was cleared by specialists of Heinrich Hirdes in 2022 by controlled detonation.

Nuclear archaeology

Detailed surveys performed in preparation of the dredging activities also included locations of known historical wrecks (Swarte Arent and Lindormen (found in 2012 during preparatory surveys) and the Danish historical vessel
The offshore construction activities are to be located in a safe haven for marine construction equipment, to facilitate the transport of personnel and to provide facilities for supply, stockpiling and load-out of materials and equipment. Furthermore, the tunnel elements are produced and towed out from the work harbour on Lolland. Both work harbours are integrated into the planned reclamation areas.

On the Danish side, the early works started one year before the tunnel trench dredging phase. This is to ensure that the necessary sections of the containment dykes surrounding the reclamation areas are ready to receive the dredged material from the tunnel trench. These early works will continue during the dredging phase and finish in time to ensure that the work harbour is ready for the production of tunnel elements used in the immersion phase. The work harbour on the Danish side also includes dredging of an access channel to a depth of -10.3 metres.

On the German side, the early works started around four months into the dredging phase to ensure that the work harbour is in operation during most of the dredging phase and the entire immersion phase.

Element casting factory and work harbours

For the production of the 89 tunnel elements, a purpose-built factory has been constructed in the work harbour on Lolland. This factory will also be the main harbour for servicing and maintenance of the construction vessels used by the contractors working for Femern A/S. A smaller work harbour will also be constructed on Fehmarn island, East of Puttgarden ferry harbour.

Reclamation areas — preparations

At the dredged material from the excavation of the tunnel trench as well as the work harbours will be placed into reclamation areas at Lolland and Fehmarn. On both sides of the Fehmarnbelt, reclaimed land will be constructed in the form of artificial land reclamations that will extend approximately 500 metres into the sea. The material dykes will surround the future reclamation areas using stones supplied by rock carriers.

The new peninsula at the northern coast of Fehmarn serves as abutment for the tunnel portal structures and contributes to making the intervention in the existing coastline as gentle as possible. On the Lolland side, there will be two reclamation areas, located on either side of the existing ferry harbour at Rødbyhavn. It is planned that the reclaimed land will extend beyond the breakwaters of the ferry harbour.

Dredging and reclamation works

An approximately 18-kilometre-long trench must be dredged into the seabed of the Fehmarnbelt between Lolland and Fehmarn, representing the majority of the dredging work in terms of the quantity of dredged material and the associated construction time. Excavated into the existing seabed, the trench will measure up to 90 metres wide and 16 metres deep. It is estimated that the volume of material to be dredged into to create the trench is around 14,500,000 m³ and dredging of the trench is planned to run over a period of 18 months.

Dredging processes

The dredging process comprises dredging of material from the tunnel trench, transportation of the dredged material to the reclamation areas and unloading of the excavated material into the reclamation areas. The applied dredging methodology is a combination of mechanical dredging with backhoe dredgers (BHD) and grab dredgers (GD) and hydraulic dredging and placement deploying trailing suction hopper dredgers (TSHD). Backhoe dredgers will dredge the shallower parts of the tunnel trench at both the German and Danish sides of the Fehmarnbelt to a depth of approximately ~25 metres. Deeper parts below this depth will be dredged by a combination of grab dredgers and trailing suction hopper dredgers. TSHD’s will make use of a special draghead for handling of the very hard clay till combined

Deilmann wreck near the coast of Lolland (found during the detailed UXO surveys). All three vessels were lost in 1644 during the Battle of Fehmarn. Both Swarte Arent and Lindormen are located at larger water depths near the tunnel alignment. Based on the detailed surveys, specific exclusion zones were established to preserve the historical wreckages. Deilmann wreck was discovered at a nearshore location within the perimeters of the land reclamations on both sides (Figure 5). In close concert with the Vikingship Museum of Roskilde, it was decided to cover the Deilmann wreck with gravel and rock prior to construction of the land reclamation to preserve the wreck and to facilitate possible future excavation within the land reclamation.

Offshore construction schema

Laying close to the existing infrastructure, the alignment for the 18-kilometre-long immersed tunnel passes just east of the existing ferry ports in Puttgarden and Rødbyhavn (Figure 6). The tunnel will be constructed from 89 prefabricated tunnel elements. Each one will be cast in a temporary factory from 89 prefabricated tunnel elements. Each one will be cast in a temporary factory and berthed of the construction vessels used by the contractors working for Femern A/S.

A smaller work harbour will also be constructed on Fehmarn island, East of Puttgarden ferry harbour.

Reclamation areas — preparations

At the dredged material from the excavation of the tunnel trench as well as the work harbours will be placed into reclamation areas at Lolland and Fehmarn. On both sides of the Fehmarnbelt, reclaimed land will be constructed in the form of artificial land reclamations that will extend approximately 500 metres into the sea. The containment dykes will surround the future reclamation areas using stones supplied by rock carriers.

The new peninsula at the northern coast of Fehmarn serves as abutment for the tunnel portal structures and contributes to making the intervention in the existing coastline as gentle as possible. On the Lolland side there will be two reclamation areas, located on either side of the existing ferry harbour at Rødbyhavn. It is planned that the reclaimed land will extend beyond the breakwaters of the ferry harbour.

Dredging and reclamation works

An approximately 18-kilometre-long trench must be dredged into the seabed of the Fehmarnbelt between Lolland and Fehmarn, representing the majority of the dredging work in terms of the quantity of dredged material and the associated construction time. Excavated into the existing seabed, the trench will measure up to 90 metres wide and 16 metres deep. It is estimated that the volume of material to be dredged into to create the trench is around 14,500,000 m³ and dredging of the trench is planned to run over a period of 18 months.

Dredging processes

The dredging process comprises dredging of material from the tunnel trench, transportation of the dredged material to the reclamation areas and unloading of the excavated material into the reclamation areas. The applied dredging methodology is a combination of mechanical dredging with backhoe dredgers (BHD) and grab dredgers (GD) and hydraulic dredging and placement deploying trailing suction hopper dredgers (TSHD). Backhoe dredgers will dredge the shallower parts of the tunnel trench at both the German and Danish sides of the Fehmarnbelt to a depth of approximately ~25 metres. Deeper parts below this depth will be dredged by a combination of grab dredgers and trailing suction hopper dredgers. TSHD’s will make use of a special draghead for handling of the very hard clay till combined
with a recirculation system that pumps water from the hopper back to the seabed in order to minimise spill of fine sediments into the environment and to optimise the dredging process. The mechanically dredged material is loaded into transport barges that then sail to the nearshore reclamation areas where the soil is unloaded. Both towed barges and self-propelled (split hopper barges) are deployed for the project.

Boulder removal
Boulder removal from the dredged till is an essential part of the dredging works and the progress thereof. A TSHD can remove and transport boulders up to a maximum diameter of approximately 0.3 metres as part of the normal dredging and offloading process. This limiting dimension is based on the dimension for dredge pump passage. A grid is installed in the draghead to prevent larger boulders from entering the pump. Larger boulders will remain on the seafloor but will be avoided by the TSHD to enable other vessels to remove them.

It is anticipated that one boulder (larger than 0.3 metres in diameter) per 50 m³ will be encountered on average, which will result in a large number of boulders needing to be removed simultaneously with the TSHD operation. The quantity of boulders left on the seabed will in turn have an effect on the productivity rate of the TSHD. One unknown is the distribution of boulders, which may be encountered evenly spread over the tunnel trench or found clustered in large quantities (nests).

A large number of the boulders left on the seabed will be removed by a fishing net operation deploying a medium or large size multicut. After positioning, the net is lowered from the stern of the vessel. During the subsequent towing, the resistance on the net increases gradually. This resistance is continuously monitored onboard until time for recovery (Figure 8).

Sediment spill management
In view of previous experiences with large-scale marine infrastructure development projects in Denmark, the proper control and management of fine sediments originating from the dredging and reclamation activities are a crucial aspect of all preparations and execution of the project. Following extensive environmental research, a total sediment spill budget was defined before works began. This sediment spill budget is split into smaller parts, distributed by time (months and seasons) and space (eight spill monitoring areas). In addition, a geographical distribution of the spill is envisaged, including near shore areas at Lolland and Fehmarn. Spill budgets range from negligible to several thousand tonnes in less sensitive areas over winter periods. Overall compliance is monitored at all these levels and totals. Contractor FBC has the responsibility to ensure compliance using extensive field monitoring and numerical modelling (Figure 9), including verification of achieved accuracies at the end of all dredging operations.

In practice, FBC modelled potential sediment spill originating from different subunits and different dredging and reclamation methods in detail. By verifying all parameters for the modelling through extensive field monitoring of dredge plumes and sediment concentrates at the permanent works boundaries, the modelling is validated (Figure 10). Results of this modelling and monitoring are published online.

Reclamation works
Reclamation works are executed on both the German and Danish sides of the Fehmarnbelt. The largest share of the dredged material will be placed at the Danish side in newly constructed land reclamations. A smaller part of the dredged material will be placed at the German side in specific stockpiles onshore.

The reclamation areas on both sides consist of bunds constructed of mechanically dredged upper till, quarry run, filter layers and armour layers. The reclamation basins are specifically designed for the purpose of receiving the dredged material from the tunnel trench, which is placed both mechanically by direct offloading from barges or dump trucks and hydraulically by pumping ashore material from hopper dredgers. All reclamation areas are initially accessible for direct placement from transport barges by leaving parts of the reclamation bunds open for marine access. Some reclamation areas are subsequently closed off in preparation of hydraulic placement of material, for which specified bunds are constructed to manage process water and contained fine sediments. Other reclamation areas are closed off when transport barges no longer have access due to reduced water depths as a consequence of material placement. These areas are subsequently finalised by placing up to 0.3 m of final design levels using dump trucks that are loaded at several temporary or more permanent offloading quays receiving the transport barges.

Specific placement methods, planning, and locations depend on several criteria which are all considered in detail during the design and work preparation stage. Each geological unit dredged in the trench features specific placement strength and other characteristics, making it more or less suitable for placement at certain locations (see Figure 2).

- Unit 1 (sand found at seabed level) becomes available in the early stages of the tunnel trench dredging and can be used for (intermediate) bund construction or drainage layers between other units.
- Unit 2 (grey; commonly found at higher levels in the tunnel trench) has relatively low strength after dredging and needs to be covered at all times to avoid the material oxidising. It is therefore placed as fill material in the lower parts of the reclamation areas.
- Unit 5 (upper till) found at all levels in the tunnel trench) has significant strength when dredged mechanically and transported carefully and can be used for bund construction or construction of the erosion cliff. However, transport at higher levels involves higher costs.
- Unit 9 (sand found at seabed level) becomes available in the early stages of the tunnel trench dredging and can be used for (intermediate) bund construction or drainage layers between other units.
Hydraulically dredged material (unit 5 upper till, unit 4 silty sands and unit 7 lower tills) are found at lower levels in the tunnel trench and therefore dredged in later stages of the trench excavation process. These are placed at higher levels in the reclamation areas as fill or surface covering material only.

Please note these are general guidelines only based on actual monitored material characteristics other placement locations or purposes will be selected. In general, there is a shortage of dredged material of sufficient strength to construct bunds and stockpiles on shore. Therefore, careful monitoring of actual behaviour of dredged material management of transport processes towards all available placement locations and selection of most suitable material is a key success factor in the entire land reclamation process.

Selection of dredging equipment

The dredging of the tunnel trench requires a small fleet of dredging equipment. Both the geometry of the tunnel trench (depth of the seabed, excavation depth of the trench, including smaller special elements) and the geology of the material to be excavated require specific dredgers to be deployed. Additional requirements related to beneficial use of dredged material in the reclamation areas also need to be taken into consideration when selecting the appropriate dredging equipment.

Firstly, the tunnel trench excavation scope is divided into mechanical dredged parts and hydraulically dredged parts. Hydraulic dredging by TSMD generally features a higher production rate and is therefore considered more cost-effective, although not all geological units can be dredged or pumped ashore efficiently by TSMD.

However, TSMD require minimum floating depths and hydraulically dredged and transported material might feature lower strengths after placement when containing large percentages of fines. Secondly, the mechanically dredged material is partly in reach of backhoe dredgers (depending on the strength of in-situ material up to 25 metres of water depth). Mechanical excavation at greater water depths will be done deploying grab dredgers.

Thirdly, the final choice of dredging equipment also depends on total spill of fine sediments into the environment. During dredging operations, inevitably some percentage of fine sediments is released into the environment, the exact amount of which largely depends on methods deployed. For each method, a source term of potential spill is determined and the final choice of equipment and methods is calculated for minimisation of total spill.

Taking these considerations into account, three main types of dredgers were chosen for the tunnel trench excavation works:

- The world’s largest backhoe dredgers were selected for the shallow parts of the dredging scope at both the German and Danish sides of the Femernbelt, to water depths of 25 metres in view of efficient dredging of the high strength upper tills (Figure 11).
- Newly built grab dredgers were chosen for mechanical dredging of the deeper parts of the tunnel trench, including the relatively small special elements (Figure 12).
- Selection of wire cranes is based on optimised hourly production in specific material to be excavated and large backhoe suction hoppers were selected for the hydraulically dredged scope (Figure 13).

Technical developments and innovation

In spite of the large fleet of existing dredgers available for the project, several technical developments took place before actual deployment for tunnel trench excavation. These include the development of a recirculation system for process water used for hydraulic dredging by TSMD: a system for boulder catching on board of the TSMD and the development of purpose-built grab dredgers and the development of draining excavation buckets for backhoe dredgers.

The recirculation system for process water reduces the amount of water spilled into the environment during dredging and loading of the water. By recirculating water from the hopper of the dredger towards the dredge head, the time before start of overflow is lengthened and the amount of water spilled through the overflow of the hopper is reduced. In view of requirements imposed on dredging operations (mainly related to minimisation of release of fine sediments into the environment), this optimises the loads taken ashore in each dredging cycle.

To preserve as much as possible the strength of upper till during dredging and transport, several draining dredging buckets were developed for the different backhoe dredgers deployed. Strength of upper till depends to large extent on the moisture content. Reduction of moisture content or avoidance of increase of moisture content of the upper tills therefore of utmost importance.

At the same time, the tunnel trench deposits to be excavated sometimes deviate from original estimates, which were based on extensive soil investigation campaigns, laboratory research efforts and geological modeling. This resulted in a database-aided model describing predicted distribution of soil units and related characteristics as in-situ strength and remodelled strength (relevant for placement in the reclamation areas). These small but sometimes relevant deviations from predictions result in the need for highly adaptive management of dredging and reclamation activities, which are implemented in close consultation between Femern A/S and the contractor FBC.

The technical developments already deployed in the works, such as the draining buckets for the backhoe dredgers and the newly constructed grab dredgers, perform according to expectations. Other innovative systems, like recirculation of process water, will only be put to the test in the near future.

Conclusions

After half a year of work on the excavation of the tunnel trench, experience has shown that the dredging and reclamation process is as challenging as ever anticipated. Governed by strict environmental requirements, cumbersome COVID-19 challenges and the local climate conditions, the works can be seen as progressing according to schedule.

At the same time, the tunnel trench deposits to be excavated sometimes deviate from original estimates, which were based on extensive soil investigation campaigns, laboratory research efforts and geological modeling. This resulted in a database-aided model describing predicted distribution of soil units and related characteristics as in-situ strength and remodelled strength (relevant for placement in the reclamation areas). These small but sometimes relevant deviations from predictions result in the need for highly adaptive management of dredging and reclamation activities, which are implemented in close consultation between Femern A/S and the contractor FBC.

The technical developments already deployed in the works, such as the draining buckets for the backhoe dredgers and the newly constructed grab dredgers, perform according to expectations. Other innovative systems, like recirculation of process water, will only be put to the test in the near future.

The grab dredgers deployed for tunnel trench dredging are purpose-built for the project.

Several technical developments took place before actual deployment for tunnel trench excavation.
Summary

This article describes the general background and need for the Fehmarnbelt Fixed Link project, an 18-kilometre-long immersed tunnel between Denmark (Rødbyhavn) and Germany (Puttgarden) – filling the infrastructural gap between Scandinavia and mainland Europe. The article first gives a general overview by showing the tunnel alignment and the surrounding areas, including the critical handling of the various dredging equipment and methodology. Further, the article comprises detailed descriptions of the extensive UXO and naval archaeology investigations, which were carried out starting with a comprehensive desk study followed by multiple surveys up to detection, wreck protection and UXO clearance.

Claus Iversen

With an MSc in Hydraulic and Coastal Engineering from the Danish Technical University and more than 40 years’ experience, Claus Iversen has worked as a superintendent or contract director for various large-scale marine related infrastructure projects in Denmark and abroad. Major assignments have included dredging and reclamation projects for the Great Belt Link, followed by the tunnel trench dredging and reclamation for the Oresund Fixed Link. From 2005–2008, Claus was responsible for the supervision of the construction of the deepest immersed tunnel in the world under the Bosphorus in Istanbul. From 2008–2021, working for Femern AS as construction manager (marine works), he was involved in the preparation and permit application for the construction of the Fehmarnbelt Fixed Link project. In between, Claus has worked as an expert consultant to UNDP in Vietnam, to FAO in South Korea and to the Danish International Development Agency (DANIDA) in Sri Lanka and Egypt.

Arjan van der Weck

After graduating with an MSc in Physical Geography and Coastal Morphology fromUniversity of the Netherlands, Arjan worked for the Dutch Ministry of Public Works and Water Management and later Deltasync (now Deltasync). He joined Boskalis in 2008 and oversaw the engineering department hydrodynamics for 11 years. He was then under manager engineering manager for the Kuala Tenggol, a kelong polder construction and project in Singapore. Arjan is currently design and engineering manager within Boskalis and a member of the project management team of Fehmarn Belt Contractors (FBC), responsible for design engineering, equipment development and sediment spill management.

Pieter van der Klis

Having gained an MSc in Civil Engineering from Delft University of Technology in the Netherlands, Pieter also held his career at Ballast Nedam as a coastal engineer. He continued to work for the dredging division and was involved in the Stonebelt Bridge and Oresund Link projects. Since 2004, Pieter has worked for Van Oord. During this time, he was responsible for the design of the northern breakwater of the Maasvlakte airport in Rotterdam and later manager of the engineering department in Dubai serving many projects in the region. He was also stationed as engineering manager in Kuwait for the KNPC project. From 2013–2022 Pieter was design and engineering manager for Femern Belt Contractors (FBC) responsible for the dredging and reclamation contract. He currently works for the protection and rehabilitation of the Romanian coast and is chairman of the Environmental Committee of EuDa.

References

Femern (2021) Information to mariners about the construction of the Fehmarnbelt tunnel. Information flyer by Femern A/S.

Marine dredged sand and gravel make an important contribution to regional supplies of building materials used in England. Marine aggregate dredging however, is known to result in effects to the receiving environment which, if not properly controlled, could cause adverse impacts to a wide range of receptors. As the marine area around England gets busier, competition for space comes with regulatory challenges and an integrated marine management approach that uses a robust planning system is required. This article discusses the regulation of aggregate dredging in England and provides an overview of the sector’s importance in providing primary aggregate.

The importance of marine aggregates
The dredging of marine mineral resources (sand and gravel) from the seabed around England and Wales is an important means of winning primary aggregate (comprising sand, gravel and crushed rock). On average, around 90% is used by the construction sector, meeting 20% of the sand and gravel demand in England and Wales (The Crown Estate, 2021). This makes it a key resource in supporting the delivery of major infrastructure projects that support government policies related to ensuring energy security and combating climate change. For example, marine dredged aggregate is likely to play a key role in future port, nuclear and offshore windfarm developments in addition to beach re-nourishment and flood defence works. The current annual level of extraction stands at 15-20 million tonnes and has the potential to increase to up to 29 million tonnes by 2030 (The Crown Estate, 2021). This is largely because of growing constraints on the availability of terrestrial supplies. It is therefore important to ensure this finite, strategic resource is planned for, managed and extracted in the most sustainable manner possible.

Regulatory background
Aggregate dredging is highly regulated and in England controls have been in place since the 1960s. Historically, The Crown Estate issued “During Pleasure” licences to aggregate operators in its capacity as the owner of the seabed and in turn owner of non-energy marine minerals. In 1968, the non-statutory Government View (GV) procedure was established whereby permission to dredge would only be issued subject to the government being satisfied that predicted impacts to the environment would not result in unacceptable deleterious impacts to marine receptors. The Crown Estate, which leases
The UK has some of the best marine aggregate resources in the world.

Marine aggregate extraction has been ongoing in the UK waters since the mid-1990s. Such production agreements assign exclusive rights to companies to extract sand and gravel through a competitive tender process, subject to any necessary regulatory consent. The earlier permissions issued to dredging operators lacked robust assessment of potential impacts, and formal impact assessments were not routinely undertaken. In 1988, the European-wide directive was introduced on “the assessment of the effects of certain public and private projects on the environment” (85/337/EEC). It requires that an environmental assessment be carried out before consent is granted for projects that are deemed to likely have a significant effect on the environment. This, together with a growing awareness of environmental issues, saw the need for a more consistent and cost-effective system that is easier to use by applicants (DEFFRA, 2007).

The Marine Bill white paper set clear objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts. The MMO has a key duty when exercising its functions to be a champion of sustainable development in the marine area. Central to the MMO exercising its functions is therefore to champion sustainable development. Generally, “sustainable development” is defined as development that meets the needs of the present without compromising the ability of future generations to meet their needs (defined in the 1987 Brundtland report). Such a holistic approach allows the MMO to consider the wider benefits of proposed developments alongside potential impacts and ensure a balance is struck between competing uses—an approach that adopts the principles of better regulation and is flexible, targeted, proportionate and risk-based.

The Marine Bill white paper set clear guidance for establishing exemptions for activities that are so insignificant that they should not be regulated at all. The white paper established principles to be considered by the MMO when determining when activities might include minor construction projects. The Marine Planning Act 2009 aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.

The Marine Bill (as enacted in the Marine Act 2009) provides the policy framework and the context for marine plans. Marine plans put into practice the objectives for the marine environment that are identified in the Marine Plans alongside the Marine Acts.

The Marine Bill aims to promote a risk-based and proportionate approach to licensing and exemptions. Objectives are intended to promote growth while protecting other uses of the sea in a balanced way.
in section 3.5.1: The UK has some of the best marine aggregate resources in the world. Marine sand and gravel makes a crucial contribution to meeting the nation’s demand for construction aggregate materials, essential for the development of our built environment. (…) The extraction of marine dredged sand and gravel should continue to the extent that this remains consistent with the principles of sustainable development, recognising that marine aggregates are a finite resource and in line with the relevant guidance and legislation.

In relation to marine plans, the MPS states in section 3.5.5 that, ‘Marine plans should be set at a minimum make provision within marine plans for a level of supply of marine sand and gravel that ensures that marine aggregates (along with other sources of aggregate, including peat) contribute to the overarching government objective of securing an adequate and continuing supply to the UK market for various uses. In doing so, marine plan authorities should consider the potential long-term requirement for marine won sand and gravel, taking into account trends in construction activity, likely climate change adaptation strategies and major project development.

The MPS follows (see section 3.5.6) that regulators should base their decisions on sustainability criteria, taking into account the existing seabed and aggregate usage, along with the need to safeguard reserves for future extraction. The statement concludes that a regulatory approval should only be granted if the proposed aggregate dredging is environmentally acceptable.

Marine plans set out priorities and directions for future development within the plan areas, informing sustainable use of marine resources and help marine users understand the best locations for their activities, including where new developments may be appropriate. The MMO is responsible for preparing marine plans in England. On 23 June 2021, the North East, North West, South East and South West plans were published, joining the existing South and East areas. As result, for the first time all England’s seas, an area of approximately 230,000 km², are covered by marine plans (Figure 2). Each of the marine plan areas has a plan with a long-term (20 years) view of activities and will be reviewed every three years.

It should be noted that each marine plan is specific to the area it covers and the policies may vary depending on, for example, available resources, environmental characteristics and sensitivities, and the existing uses of the sea. This is reflected in the policies relating to aggregate extraction.

For example, the plan policies in the East insular and East of Norfolk marine plan areas apply the intent set out in national policy taking account of the regional and national importance of the region for marine aggregate supply, and of the spatially discrete areas in which commercially viable deposits of sand and gravel are found. The policies are drafted in a hierarchical way such that policy AGG1 affords the highest level of protection and policy AGG3 requires other forms of marine development to take into account the need to safeguard aggregate reserves for future extraction (HM Government, 2014).

Policy AGG1
Proposals in areas where a licence for extraction of aggregates has been granted or formally applied for should not be authorised unless there are exceptional circumstances.

Policy AGG2
Proposals within an area subject to an Exploration and Option Agreement with The Crown Estate should not be supported unless it is demonstrated that the other development or activity is compatible with aggregate extraction or there are exceptional circumstances.

Policy AGG3
Within defined areas of high potential aggregate resource, proposals should demonstrate in order of preference:

a) that they will not prevent aggregate extraction,
b) how if there are adverse impacts on aggregate extraction, they will minimise these,
c) how if the adverse impacts cannot be minimised, they will be mitigated,
d) the case for proceeding with the application if it is not possible to minimise or mitigate the adverse impacts.

As per section 58 of the MCA 2009, public authorities (including the MMO) must take any authorisation or enforcement decision in accordance with the appropriate marine policy documents unless relevant considerations indicate otherwise.

Marine licensing process
Section 68 of the MCA A 2009 identifies activities that require a marine licence and specifies in section 68(b): “To carry out any form of dredging within the UK marine licensing area (whether or not involving the removal of any material from the sea or sea bed).” This includes the extraction of marine aggregates from the seabed.

Schedule A2, regulation 10 of the Marine Works (Environmental Impact Assessment) (Amendment) Regulations 2017 (the Marine Works Regulations) lists, “Extraction of minerals by fluviatile marine dredging.” Since the activity is listed in Schedule A2 of the Marine Works Regulations, an Environmental Impact Assessment (EIA) is required if it is likely that the aggregate dredging will have a significant effect on the environment. In such cases, the MMO would normally undertake EIA screening by determination to assess the proposed works. In practice, due to the characteristics and location of aggregate dredging, most applications for dredging generally require an EIA and are screened into EIA by agreement under regulation 15 of the Marine Works Regulations.

While each application is reviewed on its own merit, aggregate dredging projects frequently require Water Framework Directive (WFD) assessment, along with Habitats Regulations Assessment (HRA) and Marine Conservation

All England’s seas, an area of approximately 230,000 km², are covered by marine plans.
In addition to individual surveys, substantive reviews are undertaken for every marine licence every five years.

Additionally, aggregate dredging generally requires an assessment of the likely physical effects (e.g. changes in wave height) on the receiving environment and implications the activity may have on coastal erosion. Such assessment is normally submitted in the form of a Coastal Impact Study (CIS). The aggregates industry usually undertakes extensive pre-application engagement to inform their assessments and draft an environmental statement to support the application for a marine licence.

Importantly, environmental assessments for the marine aggregates sector are undertaken at both the individual project (site level) but also on a regional basis. The aggregates industry has voluntarily completed a number of Marine Aggregate Regional Environmental Assessments (MAREA) comprising broad-scale environmental characteristics covering the main regions of interest for dredging that help inform site-specific assessments (Figure 8). Through the review of MAREA, the MMO can use the best available evidence to assess the potential cumulative impacts of multiple aggregate sites within each region.

The MMO also considers representations submitted by members of the public and stakeholders who may have an interest in the proposed dredging activity. The MMO evaluates these representations received and drafts decisions having regard to the need to protect the environment and human health, prevent interference with legitimate uses of the sea and any other matters the MMO thinks relevant. Following this robust decision-making process, a marine licence may be granted unconditionally subject to conditions or the application refused.

Management and monitoring of marine aggregates extraction

While each aggregate application is reviewed on a case-by-case basis and any regulatory decision informed by the consultation process, there are several measures assured with a marine licence through licence conditions. This ensures that any aggregate extraction is undertaken in accordance with impact prediction and on a sustainable basis.

Surveys and monitoring

A marine licence would typically permit 15 years of dredging activity, which is reflected in the term of commercial licences issued by the Crown Estate. However, prior to commencement of aggregate dredging, the licence holder is required to undertake a number of pre-dredge baseline surveys. Such surveys generally require bathymetry, side scan sonar and seabed grab sample data to be collected. The licensed activity may not commence until the MMO discharges the pre-commencement requirements contained in the Marine Licence.

The conditions on the licence will then require various site-specific operational phase monitoring throughout the life of the project to assess the effects of dredging on the environment, with the frequency and coverage of such monitoring specified in the licence conditions. All the information submitted is then summarised through annual compliance reporting.

In addition to individual surveys, substantive reviews are undertaken for every marine licence every five years. Such reviews collate all the data submitted within the preceding 5-year period in order to enable comparison with the predictions in the environmental statement. This enables assessment of the impacts of the licensed activity and informs decisions on future operations.

It is a condition on aggregate dredging marine licence that dredging vessels must be fitted with an approved Electronic Monitoring System (EMS), which automatically records the date, time and location of dredging activities. EMS has been a requirement for marine aggregate extraction in UK waters since 1993. The latest EMS generation comprises a robotic, shore-based system with an independent GPS to track vessel position and an acoustic sensor to indicate vessel dredging status; a data logging frequency of 10 seconds. All data recorded are encrypted and analysed to ensure compliance with marine licence conditions. The Crown Estate administers the system process and all EMS records and share data with relevant regulators.

Any irregularities can then be investigated by the MMO who can investigate any necessary compliance enforcement actions. The EMS reports, covering summary of the dredging activities and re-sizing and separating the material during the extraction can take place.

Mitigation and management

The marine licence regulates the amount of material that can be extracted from the seabed (along with the minimum thickness cap of the remaining resource), along with the location and timing of dredging activity and the manner (dredging technique) with which extraction can take place.

Potential impacts on sensitive species or habitats are commonly mitigated through conditions on screening restrictions. Such restrictions may range from a complete ban on ‘screening’ (the mechanical process of re-sizing and separating the material during dredging operations) in a particular location to limiting screening to certain times of the year (e.g. to avoid key life stages of commercial fish species). Seasonal restrictions may also be conditioned in order to prevent any dredging activity from impacting environmental receptors during sensitive periods.

The MMO will also condition dredging exclusion zones in order to protect areas where the thickness of resource remaining on the seabed approaches the capping layer (required to ensure seabed sediments remain at least the same thickness as at the start of extraction) along with conservation and heritage features. Such zones contain a suitable buffer around the receptor to ensure further impacts from ongoing dredging activity are avoided.

In order to protect features of archaeological interest prior to commencement of dredging, the MMO must approve project-specific mitigation measures developed with an archaeological curator in line with the guidance note ‘Marine aggregate dredging and the historic environment’ developed by BMAPA and English Heritage (BMAPA, English Heritage, 2003). The note provides practical advice on assessing, evaluating, mitigating and monitoring the impact of marine aggregate dredging on archaeological features. The protocol states that all Floods of archaeological interest should be reported.

The aggregate dredging can also be managed through the use of active dredge areas, which limit the areas of seabed that can be dredged at anytime. This restricts the extent of dredging activity within the licensed area, limiting the potential impacts to the environment and the other uses of the sea.

The licence holders’ compliance with both dredging exclusion zones and active dredge areas is monitored and enforced by EMS data.

There are a number of other conditions attached to marine licences to manage potential impacts. For example, to manage the spread of invasive native species, conditions relating to non-commercial species are in line with anti-invasive measures.
The outputs from the ALSF helped to industry and The Crown Estate. Additionally, agencies, advisers, the marine aggregate sector is a mature sector and has benefited from a decade of multidisciplinary research to facility their co-existence. Marine licences also condition compliance with the Fisheries Code of Practice (BMAPA, The Crown Estate, 2015) covering requirements of timely pre-commencement notification of active dredge areas and dissemination of updates to the fishing industry throughout the dredging operations. This ensures that the licensed activities do not interfere with any fishing activity.

Engagement and transparency

The MMO is fully committed to transparency and maintains a public register in accordance with section 101 of MCA 2009. The register contains marine licence applications and decisions, along with assessments to support licence applications, supporting evidence and consultation responses. The MMO maintains regular dialogue with The Crown Estate as the seabed owner.

This extensive engagement enables the MMO to pool the necessary resources and expertise to exchange a strategic level through interaction between the regulators, industry and scientists. The aggregate sector is a mature sector and has benefited from a decade of multidisciplinary research to improve understanding and knowledge of the environmental impacts of marine aggregate extraction. Funds have been used to support research and gather, creating opportunities for cost savings for the industry and helping regulators to evaluate the potential cumulative and in-combination effects of existing and proposed future dredging activity.

This wider research effort led to compliance requirements shifting focus towards the seabed conditions necessary for the marine environment recovery and monitoring activities moving away from the traditional analysis of benthic community to greater focus on changes in seabed sediment type over time. This successful coordinated approach between regulators, advisers, policy leads and industry is often considered an example of best practice by the wider marine community.

The Crown Estate, BMAPA and the aggregates industry are also committed to improving the effective and sustainable management of the seabed through transparency and accountability. In 1999, the Crown Estate and BMAPA issued a statement of intent [the ‘Area involved’ initiative] committing to reviewing all marine aggregate extraction over a rolling five-year period with a view to minimise the area of seabed dredged. Included within the initiative was a commitment to submit areas under no longer containing useful resources of sand and gravel and to publish an annual report detailing the extent of dredging within the licences areas. The latest (23rd) report (BMAPA, The Crown Estate, 2020) shows the ongoing commitment to this voluntary initiative. The 2019-20 review of the ‘Area involved’ initiative (BMAPA, The Crown Estate, 2020) shows an overall reduction in both the area of seabed licensed and the area of seabed dredged, helping to minimise the environmental footprint of aggregate dredging activity.

Conclusions

This area exceeds the UK’s generating capacity given the expansion of various activities not least offshore wind farms. Such competition for space comes with regulatory challenges. An integrated marine management approach using marine planning has been developed, together with the BMAPA and The Crown Estate in December 2019, under this area of seabed dredged, helping to minimise the environmental footprint of aggregate dredging activity.

Acknowledgements and disclaimer

We would like to thank Mark Russell (BMAPA) and Nick Evington (The Crown Estate) for comments on an earlier draft of this paper. Any omissions or errors are those of the authors. The above does not represent statutory advice and licence applicants must seek their own legal advice. Each application is considered on its own merit and it is recommended that the MMO is consulted at the earliest opportunity in order to provide case-specific advice.

Summary

The extraction of marine aggregate in the English marine area is highly regulated and must be undertaken in line with relevant policy and plans (UK and relevant considerations indicate otherwise). There are several safeguards within the regulatory framework that ensure the risk to environmental receptors and other uses of the area is minimised. In addition, when production operations cease, the seabed sediments must be left to a similar condition to that which existed before dredging operations commenced to allow for environmental regeneration and recovery of dredged areas. The regulation and management of aggregate extractions also require an extensive stakeholder engagement so that wider uses are considered, dredging operations are sustainable and the seabed managed effectively. This article discusses the regulation of aggregate dredging in England and provides an overview of the sector’s importance in improving primary aggregate

References

DEME’S AWARD WINNING RETRACTABLE LADDER DESIGN

DEME is very proud that its retractable ladder, specifically designed for hydraulic track excavators, won the prestigious IADC Safety Award 2022, and especially because the design of this invaluable piece of safety equipment is now being shared with other IADC members.

Jeffry Bolsens, DEME’s Project QHSE-S Manager, explains how this ingenious but simple solution came about. “Staying on and off excavators is always risky. The standard access steps to these excavators are located inside the boundary of the tracks and when covered in mud or sand and clay it is very easy to slip, which regularly results in accidents, leaving our operators with the risk of operators’ shins making contact with the tracks.”

DEME talked to its operators and the majority said they all have a risk to get scars on their shins as a result of contact with the tracks while stepping on and off the excavator. The QHSE-S team knew something had to be done and a year ago, they started to consider the advantages of deploying a foldable/retractable ladder. “We saw that there was a significant problem and looked for a safer solution which could replace the existing steps,” says Jeffry.

The very large excavators have fixed platforms at the back of the machines that operate automatically, but with smaller reclamation units there is the continual risk of operators’ shins making contact with the tracks.

The new ladder is also a DEME “Safety Success Story.” Always keen to continually improve safety within the company, the QHSE-S team were absolutely determined to find a solution to this issue and carried out tests on an existing foldable ladder design. “We could immediately see the potential with the addition of some modifications, to bring it in line with DEME’s stringent safety standards.”

Initially some of the excavator operators were not enthusiastic about using the new ladder and there was some resistance to a new way of working. However, when Jeffry sees them on site nowadays, they are using it and appreciate that they are much safer.

Robust design requiring minimal maintenance

The ladder itself is made from a single piece of galvanised steel and is designed for the tough conditions on busy project sites. Self-retracting after use, the ladder can be bolted welded at the same location as the original access platform. Additionally, it features a standardized simple system that can be retrofitted on any existing hydraulic excavator.

Another major advantage is that the area between the tracks and upper cabin stays completely free, so there is no contact with sand or mud sticking on the tracks. It can also be conveniently stored without additional risks during operations and transportation. As well as this, it requires minimal maintenance.

A DEME Safety Success Story

This new ladder is also a DEME “Safety Success Story.” Always keen to continually improve safety within the company, DEME promotes the “Safety Success Stories” initiative, where everyone is encouraged to share best practice and tips about improvements they have made in their department, on a project site or on vessels. These success stories are then judged and the best ones are highlighted on the annual Safety Moment Day.

Jeffry emphasises “By equipping excavators with the new ladder, our operators can safely access their machinery under all conditions. We avoid injuries caused by contact with the tracks or falling off the tracks when stepping on and off the excavator. And we are very happy to share this innovation so that every IADC member can equip their excavators with a safe access.”

Companies can also prevent injuries occurring to their employees. “We have already had several requests from some of our competitors for the design drawings. Our management took the decision that any company requesting the design should be given access to it. Ultimately, we want every company using this equipment.”

“Additionally, many of the big projects we perform are joint ventures with other IADC members, therefore it is important to share lessons learnt, particularly when it comes to the safety of personnel,” Jeffry adds: “We want to improve safety for everyone and that each company has the same high standards as DEME. The QHSE-S team were absolutely determined to find a solution to this issue and carried out tests on an existing foldable ladder design. We could immediately see the potential with the addition of some modifications, to bring it in line with DEME’s stringent safety standards.”

Initially some of the excavator operators were not enthusiastic about using the new ladder and there was some resistance to a new way of working. However, when Jeffry sees them on site nowadays, they are using it and appreciate that they are much safer.

Preventing injuries by sharing knowledge

Jeffry stresses that it was important for DEME to share this vital safety tool with the wider industry so that other dredging companies can also prevent injuries occurring to their employees. “We have already had several requests from some of our competitors for the design drawings. Our management took the decision that any company requesting the design should be given access to it. Ultimately, we want every company using this equipment.”

“Additionally, many of the big projects we perform are joint ventures with other IADC members, therefore it is important to share lessons learnt, particularly when it comes to the safety of personnel,” Jeffry adds: “We want to improve safety for everyone and that each company has the same high standards as DEME. The QHSE-S team were absolutely determined to find a solution to this issue and carried out tests on an existing foldable ladder design. We could immediately see the potential with the addition of some modifications, to bring it in line with DEME’s stringent safety standards.”

Initially some of the excavator operators were not enthusiastic about using the new ladder and there was some resistance to a new way of working. However, when Jeffry sees them on site nowadays, they are using it and appreciate that they are much safer.

Preventing injuries by sharing knowledge

Jeffry stresses that it was important for DEME to share this vital safety tool with the wider industry so that other dredging companies can also prevent injuries occurring to their employees. “We have already had several requests from some of our competitors for the design drawings. Our management took the decision that any company requesting the design should be given access to it. Ultimately, we want every company using this equipment.”

“Additionally, many of the big projects we perform are joint ventures with other IADC members, therefore it is important to share lessons learnt, particularly when it comes to the safety of personnel,” Jeffry adds: “We want to improve safety for everyone and that each company has the same high standards as DEME. The QHSE-S team were absolutely determined to find a solution to this issue and carried out tests on an existing foldable ladder design. We could immediately see the potential with the addition of some modifications, to bring it in line with DEME’s stringent safety standards.”

Initially some of the excavator operators were not enthusiastic about using the new ladder and there was some resistance to a new way of working. However, when Jeffry sees them on site nowadays, they are using it and appreciate that they are much safer.

Preventing injuries by sharing knowledge

Jeffry stresses that it was important for DEME to share this vital safety tool with the wider industry so that other dredging companies can also prevent injuries occurring to their employees. “We have already had several requests from some of our competitors for the design drawings. Our management took the decision that any company requesting the design should be given access to it. Ultimately, we want every company using this equipment.”

“Additionally, many of the big projects we perform are joint ventures with other IADC members, therefore it is important to share lessons learnt, particularly when it comes to the safety of personnel,” Jeffry adds: “We want to improve safety for everyone and that each company has the same high standards as DEME. The QHSE-S team were absolutely determined to find a solution to this issue and carried out tests on an existing foldable ladder design. We could immediately see the potential with the addition of some modifications, to bring it in line with DEME’s stringent safety standards.”

Initially some of the excavator operators were not enthusiastic about using the new ladder and there was some resistance to a new way of working. However, when Jeffry sees them on site nowadays, they are using it and appreciate that they are much safer.
UPCOMING COURSES AND CONFERENCES

Financing Sustainable Marine and Freshwater Infrastructure Conference
9 February 2023
Movenpick Arabian Beach Resort
Dubai UAE

How can private capital accelerate the green transition in marine and freshwater infrastructure? This is the overarching question that will be explored during the IADC conference based on the recently published report by the same name, “Financing Sustainable Marine and Freshwater Infrastructure: A Joint Study to explore financing of green coastal, river and port projects.”

All stakeholders recognise the importance of sustainable projects. Investors have green-labeled funds; governments have a green taxonomy in place and contractors are continually developing nature-based solutions. However, it would appear to be committed to sustainability, however parties face insurmountable obstacles in bringing it all together in executing projects. How can parties break the deadlock in the funding of sustainable projects?

Aim of the conference
The focus of the 1-day conference will address who needs to do what and what is needed to break this deadlock. The event aims to recognise the different obstacles experienced by different stakeholders.

By having interactive discussions among stakeholders and audience based on the recently published report, “Financing Sustainable Marine and Freshwater Infrastructure,” the event will provide a platform to discuss both technical and financial aspects of the topic with experts in the field.

About the conference
IADC has regularly held a week-long seminar developed especially for professionals in dredging-related industries. These intensive courses have been successfully presented in the Netherlands, Singapore, Dubai, Argentina, Abu Dhabi, Bahrain and Brazil. With these seminars, IADC reflects its commitment to education and a better understanding of the real world of dredging.

Networking Networking is invaluable. A mid-week dinner where participants, lecturers and other dredging employees can interact, network and discuss the real-world work of dredging provides another dimension to this stimulating week.

Certificate of achievement Each seminar will receive a set of comprehensive proceedings and at the end of the week a certificate of achievement in recognition of the completion of the course.

Costs The fee for the week-long seminar is EUR 1300 (out of scope EU VAT). The fee includes all tuition, proceedings, workshops and a special participants’ networking event. We can assist you in finding a hotel or accommodation. For more information and how to register visit https://bit.ly/SeminarDelft2023.

Dredging and Reclamation Seminar
3-7 July 2023
IHE Delft Institute for Water Education
Delft, The Netherlands

About the seminar
Since 1985, the IADC has regularly held a week-long seminar developed especially for professionals in dredging-related industries. The seminar has been developed for both technical and non-technical professionals in the field of dredging and improving knowledge about dredging throughout the world.

For whom
The seminar has been developed for both technical and non-technical professionals in the field of dredging. The seminar is ideal for students, professionals from other organisations that carry out dredging projects and others.

Networking
Networking is invaluable. A mid-week dinner where participants, lecturers and other dredging professionals can interact, network and discuss the real-world work of dredging provides another dimension to this stimulating week.

Certificate of achievement
Each seminar will receive a set of comprehensive proceedings and at the end of the week a certificate of achievement in recognition of the completion of the course.

Costs
The fee for the week-long seminar is EUR 1300 (out of scope EU VAT). The fee includes all tuition, proceedings, workshops and a special participants’ networking event. We can assist you in finding a hotel or accommodation. For more information and how to register visit https://bit.ly/SeminarDelft2023.

An on-site visit to the dredging yard or project of an IADC member is an integral element in the learning process.
As part of the Western Dredging Association’s mission to promote the exchange of knowledge, the WEDA Publications Commission launched WEDAPedia – an invaluable resource for anyone interested in the dredging industry.

WEDAPedia holds a wealth of information and standard definitions for all aspects of the dredging industry. Free to access by members and non-members, the website is easy to navigate and allows visitors to download individual PDFs A-Z. For anyone, whether new to the industry or a seasoned professional, it provides an invaluable and concise dictionary of terms, technology and techniques to help get understanding of the intensely technical world of dredging.

The foundation of WEDAPedia is a database started in the 1980s in collaboration with and peer-reviewed by the U.S. Army Corps of Engineers (USACE) Dredging Navigation Branch. The USACE’s airways consolidate and build upon terminology found in a wide range of their documents.

While many people spent many hours researching, writing and transforming the almost 250-page original hardcopy into an updated digital document, WEDA means it to be a living resource that continues to grow. The WEDA Publications Commission encourages readers throughout the dredging community to send comments, updates and contributions.

The dredging industry does not stand still and WEDA trusts that with continuous input, WEDAPedia will reflect this. In this way, the ongoing review of information will continue and make WEDAPedia a current, up-to-date database of industry terms.

Main members

DEM Group
Head office Belgium
+32 5 250 5211
info@de-group.com
www.dema-group.com

Dutch Dredging
Head office The Netherlands
+31(0)23 435 0000
info@dutchdredging.nl
www.dutchdredging.nl

Group De Cloedt – DC Industrial N.V.
Head office Belgium
+32 3 972 07 94
office@groupdecloedt.be
www.groupdecloedt.be

Jan De Nul Group
Head office Luxembourg
+352 99 8911
info@janedenul.com
www.yandenu.com

Gulf Coiba (LLC)
Head office United Arab Emirates
+971 4 387 7777
gt-info@gulfcoiba.com
www.gulfcoiba.com

Hyundai Engineering & Construction Co., Ltd.
Head office South Korea
+82 2 746 1114
webmaster@hdec.co.kr
www.hdec.co.kr

National Marine Dredging Company
Head office United Arab Emirates
+971 4 352 0000
nmcd@nmcd.ac
www.nmcd.com

Penta-Ocean
Head office Japan
+81 3 5877 7151
poc_international_web@penta-ocean.co.jp
www.penta-ocean.co.jp

Rohde Nielsen A/S
Head office Denmark
+45 35 91 25 07
mai@rohde-nielsen.dk
www.rohde-nielsen.dk

Royal Boskalis Westminster N.V.
Head office The Netherlands
+31 779 696 000
royal@boskalis.com
www.boskalis.com

TGA Corporation
Head office Japan
+81 3 6787 8000
webmaster@tga-const.co.jp
www.tga-const.co.jp

Van Oord
Head office The Netherlands
+31 88 6260 010
info@vanoord.com
www.vanoord.com

Colophon

Editorial
For editorial inquiries, please email editorial@iadc-dredging.com or call +31 (0)70 352 3334. Articles featured in Terra et Aqua do not necessarily reflect the opinion of the IADC Board of Directors or of individual members.

Editor
Mr Sarah Nunn

Editorial Advisory Committee
Mr Robert du Bruijn, Chair
Mr René Kolman, Secretary General
Mrs Els Verbraecken, Treasurer
Mrs Niels de Bruijn
Mrs Theo Baartmans
Ms Sarah Nunn
Mr Theo Baartmans
Mr Niels de Bruijn
Mr Theo Baartmans

Board of Directors
Mr Frank Verhoeven, President
Mr Junji Katsumura, Vice President
Mrs Els Verbraecken, Treasurer
Mr Theo Baartmans
Mr Niels de Bruijn
Ms Mieke Fortdyck
Mr Niels Wackers
Mr Philip Hermans

Front cover
Photo © DEME Group

Back cover
Photo © DEME Group

Design
Smitswater, The Hague, The Netherlands

Print
Tujtel B.V., Hardinxveld-Giessendam, The Netherlands

All rights reserved. ©2022 International Association of Dredging Companies and individual contributors. ISSN 0376-6411

The name Terra et Aqua is a registered trademark. Electronic storage, reprinting or abstracting of the contents is allowed for non-commercial purposes with written permission of the publisher.

How to subscribe?
To receive a free print or digital subscription, register at www.iadc-dredging.com/terra-et-aqua/subscribe.

Call for submissions
Published quarterly, Terra et Aqua is an educational and professional resource that features cutting-edge innovations to disseminate knowledge throughout the dredging industry. Are you an author, researcher or expert in dredging or related fields? Do you wish to share your innovative research, paper or publications with the dredging industry? Then submit your proposals to the editor at editorial@iadc-dredging.com for consideration.

Terra et Aqua published its first issue by International Association of Dredging Companies Stationsplein 4
2275 A Z Voorburg
The Netherlands
www.iadc-dredging.com

Author: WEDA Publications Commission
Publisher: Western Dredging Association
Published: July 2022

Language: English
Price: Free digital download

Available from
https://www.wedapedia.org/wedapedia

How was this book created?
Carbon neutral print production
With written permission of the publisher.
IADC stands for 'International Association of Dredging Companies' and is the global umbrella organisation for contractors in the private dredging industry. IADC is dedicated to promoting the skills, integrity and reliability of its members as well as the dredging industry in general. IADC has over one hundred main and associated members. Together they represent the forefront of the dredging industry.

www.iadc-dredging.com